Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness

Situation awareness (SA) has received much attention in recent years because of its importance for operators of dynamic systems. Electroencephalography (EEG) can be used to measure mental states of operators related to SA. However, cross-subject EEG-based SA recognition is a critical challenge, as d...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Ruilin, Wang, Lipo, Sourina, Olga
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160531
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Situation awareness (SA) has received much attention in recent years because of its importance for operators of dynamic systems. Electroencephalography (EEG) can be used to measure mental states of operators related to SA. However, cross-subject EEG-based SA recognition is a critical challenge, as data distributions of different subjects vary significantly. Subject variability is considered as a domain shift problem. Several attempts have been made to find domain-invariant features among subjects, where subject-specific information is neglected. In this work, we propose a simple but efficient subject matching framework by finding a connection between a target (test) subject and source (training) subjects. Specifically, the framework includes two stages: (1) we train the model with multi-source domain alignment layers to collect source domain statistics. (2) During testing, a distance is computed to perform subject matching in the latent representation space. We use a reciprocal exponential function as a similarity measure to dynamically select similar source subjects. Experiment results show that our framework achieves a state-of-the-art accuracy 74.32% for the Taiwan driving dataset.