A decentralized automatic load power allocation strategy for hybrid energy storage system

A decentralized improved I-V droop control strategy for battery-supercapacitor (SC) hybrid energy storage system (HESS) is proposed in this paper. The dynamic power sharing between battery and SC is realized by replacing the constant droop coefficient in I-V droop control with virtual impedance, i.e...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Zhishuang, Wang, Ping, Jiang, Wentao, Wang, Peng
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160736
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A decentralized improved I-V droop control strategy for battery-supercapacitor (SC) hybrid energy storage system (HESS) is proposed in this paper. The dynamic power sharing between battery and SC is realized by replacing the constant droop coefficient in I-V droop control with virtual impedance, i.e. virtual inductance for battery side converter and virtual resistance for SC side converter. Besides, by injecting the virtual inductance in the battery side converter, negligible DC bus voltage deviation can be achieved without extra voltage compensator. Moreover, the state-of-charge (SoC) recovery is also considered to extend the service life of the HESS. Furthermore, in the proposed regulated power system, since the power allocation, DC bus stability and SoC recovery are decoupled from each other, the design of control parameters is simple. The corresponding design guideline is demonstrated in this paper. Finally, to verify the accuracy and feasibility of the theoretical analyses, hardware in the loop simulations have been conducted.