Defect passivation using a phosphonic acid surface modifier for efficient RP perovskite blue-light-emitting diodes

Defect management strategies are vital for enhancing the performance of perovskite-based optoelectronic devices, such as perovskite-based light-emitting diodes (PeLEDs). As additives can fucntion both as acrystallization modifier and/or defect passivator, a thorough study on the roles of additives i...

全面介紹

Saved in:
書目詳細資料
Main Authors: Mishra, Jayanta Kumar, Yantara, Natalia, Kanwat, Anil, Furuhashi, Tomoki, Ramesh, Sankaran, Salim, Teddy, Nur Fadilah Jamaludin, Febriansyah, Benny, Ooi, Zi En, Mhaisalkar, Subodh, Sum,Tze Chien, Hippalgaonkar, Kedar, Mathews, Nripan
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160915
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Defect management strategies are vital for enhancing the performance of perovskite-based optoelectronic devices, such as perovskite-based light-emitting diodes (PeLEDs). As additives can fucntion both as acrystallization modifier and/or defect passivator, a thorough study on the roles of additives is essential, especially for blue emissive Pe-LEDs, where the emission is strictly controlled by the n-domain distribution of the Ruddlesden–Popper (RP, L2An–1PbnX3n+1, where L refers to a bulky cation, while A and X are monovalent cation, and halide anion, respectively) perovskite films. Of the various additives that are available, octyl phosphonic acid (OPA) is of immense interest because of its ability to bind with uncoordinated Pb2+ ( notorious for nonradiative recombination) and therefore passivates them. Here, with the help of various spectroscopic techniques, such as X-ray photon-spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and photoluminescence quantum yield (PLQY) measurements, we demonstrate the capability of OPA to bind and passivate unpaired Pb2+ defect sites. Modification to crystallization promoting higher n-domain formation is also observed from steady-state and transient absorption (TA) measurements. With OPA treatment, both the PLQY and EQE of the corresponding PeLED showed improvements up to 53% and 3.7% at peak emission wavelength of 485 nm, respectively.