Investigation of the dynamics of cavitation bubbles in a microfluidic channel with actuations

This work presents experimental and numerical studies on the dynamics of cavitation bubbles in a nozzle-shaped microfluidic channel with PZT (lead-zirconate-titanate) actuations. It is found that a cloud of bubbles can be generated near the center of the microfluidic channel when the actuation volta...

全面介紹

Saved in:
書目詳細資料
Main Authors: Shang, Xiaopeng, Huang, Xiaoyang
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161022
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This work presents experimental and numerical studies on the dynamics of cavitation bubbles in a nozzle-shaped microfluidic channel with PZT (lead-zirconate-titanate) actuations. It is found that a cloud of bubbles can be generated near the center of the microfluidic channel when the actuation voltage is larger than a threshold at 1 kHz. After being generated, the bubbles under actuations oscillate radially with violent expansion and compression, and simultaneously translate upstream towards the opening of the nozzle. Along with radial oscillation and translation, the bubbles undergo frequent and drastic coalescence and breakup, leading to vigorous churning of surrounding liquids. The pressure variation and distribution in the microchannel are calculated by numerical simulation in Ansys Fluent, and results show that there is a low-pressure zone inside the microfluidic channel within each cycle of the actuation period, which is responsible for bubble generation observed in the experiments. The method of bubble generation in this study is novel and can be applied for the enhancement of heat and mass transfer in microfluidic operations.