Data-driven approaches for spatio-temporal analysis: a survey of the state-of-the-arts

With the advancement of telecommunications, sensor networks, crowd sourcing, and remote sensing technology in present days, there has been a tremendous growth in the volume of data having both spatial and temporal references. This huge volume of available spatio-temporal (ST) data along with the rec...

全面介紹

Saved in:
書目詳細資料
Main Authors: Das, Monidipa, Ghosh, Soumya K.
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161147
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:With the advancement of telecommunications, sensor networks, crowd sourcing, and remote sensing technology in present days, there has been a tremendous growth in the volume of data having both spatial and temporal references. This huge volume of available spatio-temporal (ST) data along with the recent development of machine learning and computational intelligence techniques has incited the current research concerns in developing various data-driven models for extracting useful and interesting patterns, relationships, and knowledge embedded in such large ST datasets. In this survey, we provide a structured and systematic overview of the research on data-driven approaches for spatio-temporal data analysis. The focus is on outlining various state-of-the-art spatio-temporal data mining techniques, and their applications in various domains. We start with a brief overview of spatio-temporal data and various challenges in analyzing such data, and conclude by listing the current trends and future scopes of research in this multi-disciplinary area. Compared with other relevant surveys, this paper provides a comprehensive coverage of the techniques from both computational/methodological and application perspectives. We anticipate that the present survey will help in better understanding various directions in which research has been conducted to explore data-driven modeling for analyzing spatio-temporal data.