Sublinear-time algorithms for compressive phase retrieval

In the problem of compressed phase retrieval, the goal is to reconstruct a sparse or approximately k-sparse vector x in C n given access to y= |φ x|, where |v| denotes the vector obtained from taking the absolute value of v inCn coordinate-wise. In this paper we present sublinear-time algorithms for...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Yi, Nakos, Vasileios
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161218
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In the problem of compressed phase retrieval, the goal is to reconstruct a sparse or approximately k-sparse vector x in C n given access to y= |φ x|, where |v| denotes the vector obtained from taking the absolute value of v inCn coordinate-wise. In this paper we present sublinear-time algorithms for a few for-each variants of the compressive phase retrieval problem which are akin to the variants considered for the classical compressive sensing problem in theoretical computer science. Our algorithms use pure combinatorial techniques and near-optimal number of measurements.