Dimension reduction in recurrent networks by canonicalization

Many recurrent neural network machine learning paradigms can be formulated using state-space representations. The classical notion of canonical state-space realization is adapted in this paper to accommodate semi-infinite inputs so that it can be used as a dimension reduction tool in the recurrent n...

全面介紹

Saved in:
書目詳細資料
Main Authors: Grigoryeva, Lyudmila, Ortega, Juan-Pablo
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161577
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English