Triaxially strained suspended graphene for large-area pseudo-magnetic fields
Strain-engineered graphene has garnered much attention recently owing to the possibilities of creating substantial energy gaps enabled by pseudo-magnetic fields (PMFs). While theoretical works proposed the possibility of creating large-area PMFs by straining monolayer graphene along three crystallog...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , , , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/161852 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Strain-engineered graphene has garnered much attention recently owing to the possibilities of creating substantial energy gaps enabled by pseudo-magnetic fields (PMFs). While theoretical works proposed the possibility of creating large-area PMFs by straining monolayer graphene along three crystallographic directions, clear experimental demonstration of such promising devices remains elusive. Herein, we experimentally demonstrate a triaxially strained suspended graphene structure that has the potential to possess large-scale and quasi-uniform PMFs. Our structure employs uniquely designed metal electrodes that function both as stressors and metal contacts for current injection. Raman characterization and tight-binding simulations suggest the possibility of achieving PMFs over a micrometer-scale area. Current-voltage measurements confirm an efficient current injection into graphene, showing the potential of our devices for a new class of optoelectronic applications. We also theoretically propose a photonic crystal-based laser structure that obtains strongly localized optical fields overlapping with the spatial area under uniform PMFs, thus presenting a practical route toward the realization of graphene lasers. |
---|