Nonequilibrium self-organization of lipids into hierarchically ordered and compositionally graded cylindrical smectics

When a dry mass of certain amphiphiles encounters water, a spectacular interfacial instability ensues: It gives rise to the formation of ensembles of fingerlike tubular protrusions called myelin figures─tens of micrometers wide and tens to hundreds of micrometers long─representing a novel class of n...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ho, James Chin Shing, Su, Wan-Chih, Wang, Xuan Chun, Parikh, Atul N., Liedberg, Bo
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161884
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:When a dry mass of certain amphiphiles encounters water, a spectacular interfacial instability ensues: It gives rise to the formation of ensembles of fingerlike tubular protrusions called myelin figures─tens of micrometers wide and tens to hundreds of micrometers long─representing a novel class of nonequilibrium higher-order self-organization. Here, we report that when phase-separating mixtures of unsaturated lipid, cholesterol, and sphingomyelin are hydrated, the resulting myelins break symmetry and couple their compositional degrees of freedom with the extended myelinic morphology: They produce complementary, interlamellar radial gradients of concentrations of cholesterol (and sphingomyelin) and unsaturated lipid, which stands in stark contrast to interlamellar, lateral phase separation in equilibrated morphologies. Furthermore, the corresponding gradients of molecule-specific chemistries (i.e., cholesterol extraction by methyl-β-cyclodextrin and GM1 binding by cholera toxin) produce unusual morphologies comprising compositionally graded vesicles and buckled tubes. We propose that kinetic differences in the information processing of hydration characteristics of individual molecules while expending energy dictate this novel behavior of lipid mixtures undergoing hydration.