A data-driven framework to predict fused filament fabrication part properties using surrogate models and multi-objective optimisation

In additive manufacturing (AM), due to large number of process parameters and multiple responses of interest, it is hard for AM designers to attain optimal part performance without a systematic approach. In this research, a data-driven framework is proposed to achieve the desired AM part performance...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Yongjie, Choi, Joon Phil, Moon, Seung Ki
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161922
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English