Exploiting the relationship between Kendall’s rank correlation and cosine similarity for attribution protection

Model attributions are important in deep neural networks as they aid practitioners in understanding the models, but recent studies reveal that attributions can be easily perturbed by adding imperceptible noise to the input. The non-differentiable Kendall's rank correlation is a key performan...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Fan, Kong, Adams Wai Kin
其他作者: School of Computer Science and Engineering
格式: Conference or Workshop Item
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161935
https://nips.cc/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English