Converting polyolefin plastics into few-walled carbon nanotubes via a tandem catalytic process: importance of gas composition and system configuration

Polyolefins such as polyethylene (PE) and polypropylene (PP) are abundant components of plastic waste. Chemical recycling of PE and PP via pyrolysis followed by chemical vapor deposition typically results in the growth of multi-walled carbon nanotubes (CNTs). Here, a tandem catalytic system for the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Veksha, Andrei, Chen, Wenqian, Liang, Lili, Lisak, Grzegorz
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161938
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Polyolefins such as polyethylene (PE) and polypropylene (PP) are abundant components of plastic waste. Chemical recycling of PE and PP via pyrolysis followed by chemical vapor deposition typically results in the growth of multi-walled carbon nanotubes (CNTs). Here, a tandem catalytic system for the growth of few-walled CNTs is reported. The successful synthesis of few-walled CNTs in the system relies on the catalytic processing of pyrolysis gas from plastics into intermediate gas mixtures containing mainly paraffins and hydrogen (700 °C, catalyst: 40 wt% Co, 10 wt% Mo and 50 wt% MgO). Under appropriate conditions (1000 °C, catalyst: Co 3 wt%, Mo 2 wt% and MgO 95 wt%, synthesis time: 20 min), the obtained intermediate gas mixture was selectively converted into few-walled CNTs with > 95% CNTs having small outer diameters of 1-7 nm, containing CNTs with as little as three walls and having distinct radial breathing mode in Raman spectra at wave lengths 100-400 cm-1. The proposed synthesis process opens new opportunities for production of high value few-walled CNTs from plastic waste.