Machine-learning-enhanced systemic risk measure: a two-step supervised learning approach

This paper explores ways to improve the existing systemic risk measures by incorporating machine learning algorithms into the measurement. We aim to overcome the shortcomings of existing methods that rely on restricted modeling and are difficult to tap into various data resources. To this end, this...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Liu, Ruicheng, Pun, Chi Seng
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/161971
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This paper explores ways to improve the existing systemic risk measures by incorporating machine learning algorithms into the measurement. We aim to overcome the shortcomings of existing methods that rely on restricted modeling and are difficult to tap into various data resources. To this end, this paper unifies a dynamic quantification framework for systemic risk and links it to a two-step supervised learning problem, which allows for hierarchical structure of the systemic event and the return dependence. We leverage the generalization and predictive powers of machine learning to statistically model the tail events and the co-movements of the equity returns during the shocks to the macro-economy. Our results show that most machine learning algorithms enhance the systemic risk measure's predictive power. Numerous comparative and sensitivity backtesting studies for United States and Hong Kong markets are conducted, from which we recommend the best machine learning algorithm for systemic risk measurement.