Machine-learning-enhanced systemic risk measure: a two-step supervised learning approach

This paper explores ways to improve the existing systemic risk measures by incorporating machine learning algorithms into the measurement. We aim to overcome the shortcomings of existing methods that rely on restricted modeling and are difficult to tap into various data resources. To this end, this...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Ruicheng, Pun, Chi Seng
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161971
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This paper explores ways to improve the existing systemic risk measures by incorporating machine learning algorithms into the measurement. We aim to overcome the shortcomings of existing methods that rely on restricted modeling and are difficult to tap into various data resources. To this end, this paper unifies a dynamic quantification framework for systemic risk and links it to a two-step supervised learning problem, which allows for hierarchical structure of the systemic event and the return dependence. We leverage the generalization and predictive powers of machine learning to statistically model the tail events and the co-movements of the equity returns during the shocks to the macro-economy. Our results show that most machine learning algorithms enhance the systemic risk measure's predictive power. Numerous comparative and sensitivity backtesting studies for United States and Hong Kong markets are conducted, from which we recommend the best machine learning algorithm for systemic risk measurement.