Determination of dominant recombination site in perovskite solar cells through illumination-side-dependent impedance spectroscopy

Perovskite solar cells (PSCs) have attracted wide attention due to their capacity to achieve high-power conversion efficiencies. However, the high trap-assisted recombination taking place in the active layer leads to performance loss in PSCs. In particular, the excessive recombination at the interfa...

全面介紹

Saved in:
書目詳細資料
Main Authors: Omer, Mohamed I., Wang, Xizu, Tang, Xiaohong
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/162135
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Perovskite solar cells (PSCs) have attracted wide attention due to their capacity to achieve high-power conversion efficiencies. However, the high trap-assisted recombination taking place in the active layer leads to performance loss in PSCs. In particular, the excessive recombination at the interface between the perovskite active layer and the carrier selective contacts can be especially problematic. Therefore, the identification of the dominant recombination pathways in a given PSC architecture is of significant importance for the mitigation of losses and enhancement of device performance. Here, we introduce an approach for identifying the dominant recombination pathways in PSCs by applying illumination-side-dependent impedance spectroscopy (ISD-IS) measurements on the devices with a semi-transparent top electrode. We validate this technique using coupled ionic-electronic numerical simulations and apply it experimentally on a standard PSC structure. Overall, this approach could be of significant importance for pinpointing the performance bottlenecks in PSC devices under operationally relevant conditions and providing a more detailed picture of the losses in a complete PSC device by examining its behaviors under illumination from both sides at different operation conditions, which could allow for a more targeted optimization strategy of PSCs to improve their performance.