FAT: an in-memory accelerator with fast addition for ternary weight neural networks

Convolutional Neural Networks (CNNs) demonstrate excellent performance in various applications but have high computational complexity. Quantization is applied to reduce the latency and storage cost of CNNs. Among the quantization methods, Binary and Ternary Weight Networks (BWNs and TWNs) have a uni...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhu, Shien, Duong, Luan H. K., Chen, Hui, Liu, Di, Liu, Weichen
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/162483
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!