Expected size of random Tukey layers and convex layers

We study the Tukey layers and convex layers of a planar point set, which consists of n points independently and uniformly sampled from a convex polygon with k vertices. We show that the expected number of vertices on the first t Tukey layers is O(ktlog⁡(n/k)) and the expected number of vertices on t...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Guo, Zhengyang, Li, Yi, Pei, Shaoyu
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/162710
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We study the Tukey layers and convex layers of a planar point set, which consists of n points independently and uniformly sampled from a convex polygon with k vertices. We show that the expected number of vertices on the first t Tukey layers is O(ktlog⁡(n/k)) and the expected number of vertices on the first t convex layers is O(kt3log⁡(n/(kt2))). We also show a lower bound of Ω(tlog⁡n) for both quantities in the special cases where k=3,4. The implications of those results in the average-case analysis of two computational geometry algorithms are then discussed.