Self-consistent learning of neural dynamical systems from noisy time series

We introduce a new method which, for a single noisy time series, provides unsupervised filtering, state space reconstruction, efficient learning of the unknown governing multivariate dynamical system, and deterministic forecasting. We construct both the underlying trajectories and a latent dynamical...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Zhe, Guet, Claude
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/162829
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!