Multi-domain anime image generation and editing
Generative models such as text-to-image and image-to-image have been very successful to date. Some successful models include OpenAI's DALLE-2, Google's Imagen, and Parti. However, these state-of-the-art (SOTA) Diffusion models are hard to train, and finetuning them requires resources...
Saved in:
主要作者: | Aravind S/O Sivakumaran |
---|---|
其他作者: | Lu Shijian |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/162940 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
3D motion editing for animation
由: Chee, Yi Yong
出版: (2017) -
Be a hairstylist - editing hair for face images using generative adversarial network
由: Lim, Wei Ze
出版: (2023) -
Image editing with instance segmentation and image inpainting
由: Tok, Jeng Wen
出版: (2023) -
Towards object-based image editing
由: Zhou, Hailing
出版: (2012) -
EditAnything: Empowering unparalleled flexibility in image editing and generation
由: GAO, Shanghua, et al.
出版: (2023)