A butterfly-accelerated volume integral equation solver for broad permittivity and large-scale electromagnetic analysis

A butterfly-accelerated volume integral equation (VIE) solver is proposed for fast and accurate electromagnetic (EM) analysis of scattering from heterogeneous objects. The proposed solver leverages the hierarchical off-diagonal butterfly (HOD-BF) scheme to construct the system matrix and obtain its...

全面介紹

Saved in:
書目詳細資料
Main Authors: Sadeed Bin Sayed, Liu, Yang, Gomez, Luis J., Yucel, Abdulkadir C.
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/163896
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:A butterfly-accelerated volume integral equation (VIE) solver is proposed for fast and accurate electromagnetic (EM) analysis of scattering from heterogeneous objects. The proposed solver leverages the hierarchical off-diagonal butterfly (HOD-BF) scheme to construct the system matrix and obtain its approximate inverse, used as a preconditioner. Complexity analysis and numerical experiments validate the $O(N\log^2N)$ construction cost of the HOD-BF-compressed system matrix and $O(N^{1.5}\log N)$ inversion cost for the preconditioner, where $N$ is the number of unknowns in the high-frequency EM scattering problem. For many practical scenarios, the proposed VIE solver requires less memory and computational time to construct the system matrix and obtain its approximate inverse compared to a $\mathcal{H}$ matrix-accelerated VIE solver. The accuracy and efficiency of the proposed solver have been demonstrated via its application to the EM analysis of large-scale canonical and real-world structures comprising of broad permittivity values and involving millions of unknowns.