An object-oriented framework to enable workflow evolution across materials acceleration platforms
Progress in data-driven self-driving laboratories for solving materials grand challenges has accelerated with the advent of machine learning, robotics, and automation, but they are usually designed with specific materials and processes in mind. To develop the next generation of materials acceleratio...
Saved in:
Main Authors: | Leong, Chang Jie, Low, Andre Kai Yuan, Recatala-Gomez, Jose, Velasco, Pablo Quijano, Vissol-Gaudin, Eleonore, Tan, Jin Da, Ramalingam, Balamurugan, Made, Riko I, Pethe, Shreyas Dinesh, Sebastian, Saumya, Lim, Yee-Fun, Khoo, Jonathan Zi Hui, Bai, Yang, Cheng, Jayce Jian Wei, Hippalgaonkar, Kedar |
---|---|
其他作者: | School of Materials Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164443 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Mapping pareto fronts for efficient multi-objective materials discovery
由: Low, Andre Kai Yuan, et al.
出版: (2024) -
Automated electrokinetic stretcher for manipulating nanomaterials
由: Soh, Beatrice W., et al.
出版: (2023) -
Constructing custom thermodynamics using deep learning
由: Chen, Xiaoli, et al.
出版: (2024) -
Direct ink writing for electroresponsive human machine interfaces
由: Pethe, Shreyas Dinesh
出版: (2021) -
Identifying optimal indicators and purposes of population segmentation through engagement of key stakeholders: A qualitative study
由: Yoon, S., et al.
出版: (2021)