An object-oriented framework to enable workflow evolution across materials acceleration platforms
Progress in data-driven self-driving laboratories for solving materials grand challenges has accelerated with the advent of machine learning, robotics, and automation, but they are usually designed with specific materials and processes in mind. To develop the next generation of materials acceleratio...
محفوظ في:
المؤلفون الرئيسيون: | Leong, Chang Jie, Low, Andre Kai Yuan, Recatala-Gomez, Jose, Velasco, Pablo Quijano, Vissol-Gaudin, Eleonore, Tan, Jin Da, Ramalingam, Balamurugan, Made, Riko I, Pethe, Shreyas Dinesh, Sebastian, Saumya, Lim, Yee-Fun, Khoo, Jonathan Zi Hui, Bai, Yang, Cheng, Jayce Jian Wei, Hippalgaonkar, Kedar |
---|---|
مؤلفون آخرون: | School of Materials Science and Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/164443 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Mapping pareto fronts for efficient multi-objective materials discovery
بواسطة: Low, Andre Kai Yuan, وآخرون
منشور في: (2024) -
Automated electrokinetic stretcher for manipulating nanomaterials
بواسطة: Soh, Beatrice W., وآخرون
منشور في: (2023) -
Constructing custom thermodynamics using deep learning
بواسطة: Chen, Xiaoli, وآخرون
منشور في: (2024) -
Direct ink writing for electroresponsive human machine interfaces
بواسطة: Pethe, Shreyas Dinesh
منشور في: (2021) -
Identifying optimal indicators and purposes of population segmentation through engagement of key stakeholders: A qualitative study
بواسطة: Yoon, S., وآخرون
منشور في: (2021)