Fundamental limits of quantum error mitigation

The inevitable accumulation of errors in near-future quantum devices represents a key obstacle in delivering practical quantum advantages, motivating the development of various quantum error-mitigation methods. Here, we derive fundamental bounds concerning how error-mitigation algorithms can reduce...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Takagi, Ryuji, Endo, Suguru, Minagawa, Shintaro, Gu, Mile
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/165168
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:The inevitable accumulation of errors in near-future quantum devices represents a key obstacle in delivering practical quantum advantages, motivating the development of various quantum error-mitigation methods. Here, we derive fundamental bounds concerning how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead. Our bounds place universal performance limits on a general error-mitigation protocol class. We use them to show (1) that the sampling overhead that ensures a certain computational accuracy for mitigating local depolarizing noise in layered circuits scales exponentially with the circuit depth for general error-mitigation protocols and (2) the optimality of probabilistic error cancellation among a wide class of strategies in mitigating the local dephasing noise on an arbitrary number of qubits. Our results provide a means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.