Can normalization methods allow escape from the doppelgänger effect in biomedical data?
The Doppelganger Effect (DE) describes the situation when an AI/ML model performs well on a validation set regardless of whether it has truly learned. DE may exaggerate the reported performance of the AI/ML model on real-world data, complicate model selection processes and lead towards false domain...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Thesis-Master by Research |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/165285 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|