Can normalization methods allow escape from the doppelgänger effect in biomedical data?

The Doppelganger Effect (DE) describes the situation when an AI/ML model performs well on a validation set regardless of whether it has truly learned. DE may exaggerate the reported performance of the AI/ML model on real-world data, complicate model selection processes and lead towards false domain...

全面介紹

Saved in:
書目詳細資料
主要作者: Guo, Zexi
其他作者: Goh Wen Bin Wilson
格式: Thesis-Master by Research
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/165285
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!