Targeted universal adversarial examples for remote sensing

Researchers are focusing on the vulnerabilities of deep learning models for remote sensing; various attack methods have been proposed, including universal adversarial examples. Existing universal adversarial examples, however, are only designed to fool deep learning models rather than target specifi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Bai, Tao, Wang, Hao, Wen, Bihan
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/165409
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Researchers are focusing on the vulnerabilities of deep learning models for remote sensing; various attack methods have been proposed, including universal adversarial examples. Existing universal adversarial examples, however, are only designed to fool deep learning models rather than target specific goals, i.e., targeted attacks. To this end, we propose two variants of universal adversarial examples called targeted universal adversarial examples and source-targeted universal adversarial examples. Extensive experiments on three popular datasets showed strong attackability of the two targeted adversarial variants. We hope such strong attacks can inspire and motivate research on the defenses against adversarial examples in remote sensing.