MobileNet-SSD for surface detection
In this Final Year Project (FYP), we aim to develop a Mobilenet-SSD network to detect defects in surface images. In particular, the SSD detection network locates objects in the feature map using a collection of default boxes of various aspect ratios and sizes. To handle different object sizes, th...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/165968 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | In this Final Year Project (FYP), we aim to develop a Mobilenet-SSD network to
detect defects in surface images. In particular, the SSD detection network locates
objects in the feature map using a collection of default boxes of various aspect ratios
and sizes. To handle different object sizes, the SSD uses feature maps from different
resolutions and integrates all computing into a single network. However, the large
number of parameters makes the SSD too slow for edge devices. MobileNets, on the
other hand, have a streamlined architecture using depth-wise separable convolutions
to build lightweight deep neural networks. Therefore, we integrate MobileNet with
SSD to create a Mobilenet-SSD network for surface identification that is both fast
and accurate. Experimental results on the PASCAL VOC and NEU-DET datasets
have validated the effectiveness of our Mobilenet-SSD network. |
---|