MobileNet-SSD for surface detection

In this Final Year Project (FYP), we aim to develop a Mobilenet-SSD network to detect defects in surface images. In particular, the SSD detection network locates objects in the feature map using a collection of default boxes of various aspect ratios and sizes. To handle different object sizes, th...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Wang, Weiyi
مؤلفون آخرون: Zheng Jianmin
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/165968
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this Final Year Project (FYP), we aim to develop a Mobilenet-SSD network to detect defects in surface images. In particular, the SSD detection network locates objects in the feature map using a collection of default boxes of various aspect ratios and sizes. To handle different object sizes, the SSD uses feature maps from different resolutions and integrates all computing into a single network. However, the large number of parameters makes the SSD too slow for edge devices. MobileNets, on the other hand, have a streamlined architecture using depth-wise separable convolutions to build lightweight deep neural networks. Therefore, we integrate MobileNet with SSD to create a Mobilenet-SSD network for surface identification that is both fast and accurate. Experimental results on the PASCAL VOC and NEU-DET datasets have validated the effectiveness of our Mobilenet-SSD network.