SOK: homomorphic encryption in machine learning
The field of machine learning (ML) has become ubiquitous, with new systems and models being implemented in a diverse range of domains resulting in the widespread use of software-based training and inference on third-party cloud platforms. There is growing recognition that outsourcing and hosting mac...
Saved in:
主要作者: | Ramasubramanian, Nisha |
---|---|
其他作者: | Anupam Chattopadhyay |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/165976 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Homomorphic encryption(HE) enabled federated learning
由: Myat Nyein Soe
出版: (2020) -
Encrypted genomes: advancing personalized medicine with homomorphic encryption
由: Lee, Bryan Wei Han
出版: (2024) -
PRIVACY-PRESERVING COLLABORATIVE MACHINE LEARNING USING HOMOMORPHIC ENCRYPTION
由: JESTINE PAUL
出版: (2023) -
Encrypted data processing with Homomorphic Re-Encryption
由: DING, Wenxiu, et al.
出版: (2017) -
Accelerating homomorphic encryption for privacy-preserving applications
由: Ho, Truong Phu Truan
出版: (2020)