Deep branching solution of financial partial differential equations

This paper compares the performance of the deep branching method against two other popular deep learning methods, deep BSDE and deep Galerkin, for solving partial differential equations (PDEs) in finance. The methods were tested on different financial models including Bachelier, Black-Scholes on Eur...

全面介紹

Saved in:
書目詳細資料
主要作者: Wang, Yiran
其他作者: Nicolas Privault
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/166540
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This paper compares the performance of the deep branching method against two other popular deep learning methods, deep BSDE and deep Galerkin, for solving partial differential equations (PDEs) in finance. The methods were tested on different financial models including Bachelier, Black-Scholes on European options, power options, and forward contracts. Results showed that the deep branching method outperformed both deep BSDE and deep Galerkin in terms of accuracy and stability, but further testing is needed to compare the runtime in dealing with forward contract and power options. Overall, this study highlights the efficiency of the deep branching method as a general-purpose numerical method for solving PDEs, and its potential for broader applications in finance and beyond.