Modelling of geometry for directed energy deposition via machine learning

Predicting the geometry of bead in multi-track and multi-layer Directed Energy Deposition (DED) presents a challenge due to variations in process parameters, resulting in changes in geometry from one layer or track to another. To address this issue, a Long Short-Term Memory (LSTM) model is applied t...

全面介紹

Saved in:
書目詳細資料
主要作者: Hong, Weidong
其他作者: Li Hua
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/167105
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English