Effects of incremental training on watermarked neural networks
Deep learning has achieved extraordinary results in many different areas, ranging from autonomous driving [1], medical devices [2] to speech recognition and natural language processing [3]. Generating a high-performance neural network is costly in aspects of time, computational resources, and exp...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/167143 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Deep learning has achieved extraordinary results in many different areas, ranging from autonomous
driving [1], medical devices [2] to speech recognition and natural language processing
[3]. Generating a high-performance neural network is costly in aspects of time, computational resources,
and expertise, making the models valuable intellectual property (IP). As a result, there has
been a notable growth in attention and investments in the paradigm of machine learning. In recent
years, watermarking methods have been developed in order to protect the Intellectual Property
Rights (IPR) of neural networks, and many schemes have successfully prevented adversaries from
stealing such models. However, little has been studied on how Incremental Training would affect
the persistence of watermarks in such watermarking schemes. This investigation aims to discover
the effects of Incremental Training on in existing watermarking schemes.
Keywords: Intellectual Property Rights (IPR), Watermarking, Incremental Training |
---|