Predicting synthesizability using machine learning on databases of existing inorganic materials
Defining the metric for synthesizability and predicting new compounds that can be experimentally realized in the realm of data-driven research is a pressing problem in contemporary materials science. The increasing computational power and advancements in machine learning (ML) algorithms provide a ne...
Saved in:
Main Authors: | , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/168721 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|