Predicting synthesizability using machine learning on databases of existing inorganic materials

Defining the metric for synthesizability and predicting new compounds that can be experimentally realized in the realm of data-driven research is a pressing problem in contemporary materials science. The increasing computational power and advancements in machine learning (ML) algorithms provide a ne...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhu, Ruiming, Tian, Siyu Isaac Parker, Ren, Zekun, Li, Jiali, Buonassisi, Tonio, Hippalgaonkar, Kedar
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/168721
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!