A brief survey on recent advances in coreference resolution

The task of resolving repeated objects in natural languages is known as coreference resolution, and it is an important part of modern natural language processing. It is classified into two categories depending on the resolved objects, namely entity coreference resolution and event coreference resolu...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Ruicheng, Mao, Rui, Luu, Anh Tuan, Cambria, Erik
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/170039
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The task of resolving repeated objects in natural languages is known as coreference resolution, and it is an important part of modern natural language processing. It is classified into two categories depending on the resolved objects, namely entity coreference resolution and event coreference resolution. Predicting coreference connections and identifying mentions/triggers are the major challenges in coreference resolution, because these implicit relationships are particularly difficult in natural language understanding in downstream tasks. Coreference resolution techniques have experienced considerable advances in recent years, encouraging us to review this task in the following aspects: current employed evaluation metrics, datasets, and methods. We investigate 10 widely used metrics, 18 datasets and 4 main technical trends in this survey. We believe that this work is a comprehensive roadmap for understanding the past and the future of coreference resolution.