A graph attention network utilizing multi-granular information for emotion-cause pair extraction
Emotion-cause pair extraction (ECPE) aims to extract emotion and cause clauses underlying a text and pair them. Most of the recent approaches to this problem adopt deep neural networks to model the inter-clause dependency, without making full use of information at word level and document level. In t...
Saved in:
Main Authors: | Chen, Siyuan, Mao, Kezhi |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170063 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Span-level emotion cause analysis by BERT-based graph attention network
由: LI, Xiangju, et al.
出版: (2021) -
Probabilistic Logic Graph Attention Networks for Reasoning.
由: Vardhan, L Vivek Harsha, et al.
出版: (2020) -
MGAT: Multimodal Graph Attention Network for Recommendation
由: Zhulin Tao, et al.
出版: (2020) -
Fine-grained detection of academic emotions with spatial temporal graph attention networks using facial landmarks
由: FWA, Hua Leong
出版: (2022) -
Contextualized graph attention network for recommendation with item knowledge graph
由: Liu, Yong, et al.
出版: (2022)