Reassignment of improbable natural products identified through chemical principle screening

Natural products continue to be reported at an astonishing rate from a wide range of multidisciplinary research activities in the pursuit of understanding the chemistry of biodiversity. However, the elucidation of chemical structure in the modern era is heavily reliant on the analysis and interpreta...

全面介紹

Saved in:
書目詳細資料
Main Authors: Elyashberg, Mikhail, Novitskiy, Ivan M., Bates, Roderick Wayland, Kutateladze, Andrei G., Williams, Craig M.
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/170399
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Natural products continue to be reported at an astonishing rate from a wide range of multidisciplinary research activities in the pursuit of understanding the chemistry of biodiversity. However, the elucidation of chemical structure in the modern era is heavily reliant on the analysis and interpretation of multiple spectroscopic outputs, and in most cases this activity is by no means trivial. Structural errors continue to be described given the inherent complexity of natural products. Computer-Assisted Structure Elucidation (CASE) continues to provide improved resolving power in this regard, but for enhanced accuracy quantum chemical spectrum prediction methodology is paramount. Reported herein are a range of counterfactual natural products, identified through chemical principal screening, which have been reassigned using a combination of chemical intuition, chemical synthesis, CASE and DU8+ spectrum prediction.