Unconstrained facial action unit detection via latent feature domain
Facial action unit (AU) detection in the wild is a challenging problem, due to the unconstrained variability in facial appearances and the lack of accurate annotations. Most existing methods depend on either impractical labor-intensive labeling or inaccurate pseudo labels. In this paper, we propo...
Saved in:
Main Authors: | Shao, Zhiwen, Cai, Jianfei, Cham, Tat-Jen, Lu, Xuequan, Ma, Lizhuang |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/172649 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Facial action unit detection using attention and relation learning
由: Shao, Zhiwen, et al.
出版: (2022) -
Global convergence of nonmonotone descent methods for unconstrained optimization problems
由: Sun, W., et al.
出版: (2013) -
Recovering facial reflectance and geometry from multi-view images
由: Song, Guoxian, et al.
出版: (2023) -
An exemplar-based multi-view domain generalization framework for visual recognition
由: Niu, Li, et al.
出版: (2020) -
GeoConv: geodesic guided convolution for facial action unit recognition
由: Chen, Yuedong, et al.
出版: (2023)