Ultrafast laser pulse repetition rate dependent switching of nonlinearity in water

Tailoring the nonlinear optical properties of materials through extrinsic parameter controls is advantageous for many applications. In this article, ultrafast laser pulse repetition rate induced switching of reverse saturable absorption to saturable absorption of water is reported. For the investiga...

全面介紹

Saved in:
書目詳細資料
Main Authors: Perumbilavil, Sreekanth, Sandeep, C. S. Suchand, Matham, Murukeshan Vadakke
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/173339
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Tailoring the nonlinear optical properties of materials through extrinsic parameter controls is advantageous for many applications. In this article, ultrafast laser pulse repetition rate induced switching of reverse saturable absorption to saturable absorption of water is reported. For the investigations, a conventional open aperture z-scan measurement system equipped with a variable repetition rate ultrafast laser source operating at the wavelength of 1030 nm was employed. A combination of weak saturable absorption and strong reverse saturable absorption induced by three-photon absorption is observed at low and moderate repetition rates. At repetition rates above 5 kHz, there is a significant variation in nonlinear absorption, where the reverse saturable absorption starts to diminish and saturable absorption increases. For repetition rates beyond 100 kHz, the nonlinearity gets reversed, where water tends to behave more like a saturable absorber with a weak three-photon absorption component.