Fuel consumption evaluation of connected automated vehicles under rear-end collisions
Connected automated vehicles (CAV) can increase traffic efficiency, which is considered a critical factor in saving energy and reducing emissions in traffic congestion. In this paper, systematic traffic simulations are conducted for three car-following modes, including intelligent driver model (IDM)...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/173543 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Connected automated vehicles (CAV) can increase traffic efficiency, which is considered a critical factor in saving energy and reducing emissions in traffic congestion. In this paper, systematic traffic simulations are conducted for three car-following modes, including intelligent driver model (IDM), adaptive cruise control (ACC), and cooperative ACC (CACC), in congestions caused by rear-end collisions. From the perspectives of lane density, vehicle trajectory and vehicle speed, the fuel consumption of vehicles under the three car-following modes are compared and analysed, respectively. Based on the vehicle driving and accident environment parameters, an XGBoost algorithm-based fuel consumption prediction framework is proposed for traffic congestions caused by rear-end collisions. The results show that compared with IDM and ACC modes, the vehicles in CACC car-following mode have the ideal performance in terms of total fuel consumption; besides, the traffic flow in CACC mode is more stable, and the speed fluctuation is relatively tiny in different accident impact regions, which meets the driving desires of drivers. |
---|