An enhanced ensemble deep random vector functional link network for driver fatigue recognition
This work investigated the use of an ensemble deep random vector functional link (edRVFL) network for electroencephalogram (EEG)-based driver fatigue recognition. Against the low feature learning capability of the edRVFL network from raw EEG signals, two strategies were exploited in this work. Speci...
Saved in:
Main Authors: | Li, Ruilin, Gao, Ruobin, Yuan, Liqiang, Suganthan, Ponnuthurai Nagaratnam, Wang, Lipo, Sourina, Olga |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/174542 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
A spectral-ensemble deep random vector functional link network for passive brain–computer interface
由: Li, Ruilin, et al.
出版: (2024) -
Random vector functional link neural network based ensemble deep learning
由: Shi, Qiushi, et al.
出版: (2022) -
Extended features based random vector functional link network for classification problem
由: Malik, Ashwani Kumar, et al.
出版: (2022) -
A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition
由: Li, Ruilin, et al.
出版: (2023) -
Online dynamic ensemble deep random vector functional link neural network for forecasting
由: Gao, Ruobin, et al.
出版: (2024)