Dataset compression

This study explores dataset distillation and pruning, which are important methods for managing and optimizing datasets for machine learning. The goal is to understand the impact of various dataset distillation methods such as Performance Matching, Gradient Matching, Distribution Matching, Trajectory...

全面介紹

Saved in:
書目詳細資料
主要作者: Xiao, Lingao
其他作者: Weichen Liu
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/175177
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This study explores dataset distillation and pruning, which are important methods for managing and optimizing datasets for machine learning. The goal is to understand the impact of various dataset distillation methods such as Performance Matching, Gradient Matching, Distribution Matching, Trajectory Matching, and BN Matching on creating compact datasets that retain the essence of their larger counterparts. Additionally, dataset pruning or coreset selection techniques such as Forgetting, AUM, Entropy (Uncertainty), EL2N, SSP, and CCS are examined for their ability to refine datasets by removing less informative samples. By combining these methodologies, we hope to gain a nuanced understanding of dataset optimization, which is crucial for improving the efficacy and efficiency of machine learning models. We also conduct experiments on weight perturbation and reduced training steps, as well as explore curriculum learning to further enrich our discourse. This comprehensive treatise on dataset compression can help propel machine-learning models towards higher levels of success.