Adaptive micro- and macro-knowledge incorporation for hierarchical text classification
Hierarchical text classification (HTC) aims to classify a text into multiple categories organized in a hierarchical structure. The state-of-the-art HTC methods usually employ graph networks, where label graphs are constructed and label representation is learned to interact with text representations...
Saved in:
Main Authors: | Feng, Zijian, Mao, Kezhi, Zhou, Hanzhang |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/175778 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Tailored text augmentation for sentiment analysis
由: Feng, Zijian, et al.
出版: (2022) -
SIMULATING HIERARCHICAL STRUCTURE OF HUMAN VISUAL CORTEX FOR IMAGE CLASSIFICATION
由: SEPEHR JALALI
出版: (2013) -
Blocking reduction strategies in hierarchical text classification
由: LIM, Ee Peng, et al.
出版: (2004) -
Bayesian online classifiers for text classification and filtering
由: Chai, K.M.A., et al.
出版: (2013) -
A multilabel text classification algorithm for labeling risk factors in sec form 10-K
由: Huang, K.-W., et al.
出版: (2013)