Asymmetric electron redistribution in niobic-oxygen vacancy associates to tune noncovalent interaction in CO2 photoreduction

The role of vacancy associates in photocatalytic CO2 reduction is an open question. Herein, the Nb─O vacancy associates (VNb─O ) are engineered into niobic acid (NA) atomic layers to tailor the CO2 photoreduction performance. The intrinsic charge compensation from O to Nb around Nb─O vacancy associa...

全面介紹

Saved in:
書目詳細資料
Main Authors: Di, Jun, Chen, Chao, Wu, Yao, Chen, Hao, Xiong, Jun, Long, Ran, Li, Shuzhou, Song, Li, Jiang, Wei, Liu, Zheng
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/177911
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The role of vacancy associates in photocatalytic CO2 reduction is an open question. Herein, the Nb─O vacancy associates (VNb─O ) are engineered into niobic acid (NA) atomic layers to tailor the CO2 photoreduction performance. The intrinsic charge compensation from O to Nb around Nb─O vacancy associates can manipulate the active electronic states, leading to the asymmetric electron redistribution. These local symmetry breaking sites show a charge density gradient, forming a localized polarization field to polarize nonpolar CO2 molecules and tune the noncovalent interaction of reaction intermediates. This unique configuration contributes to the 9.3 times increased activity for photocatalytic CO2 reduction. Meantime, this VNb─O NA also shows excellent photocatalytic activity for NO3 - -NH4 + synthesis, with NH4 + formation rate up to 3442 µmol g-1 h-1 . This work supplies fresh insights into the vacancy associate design for electron redistribution and noncovalent interaction tuning in photocatalysis.