Out of distribution reasoning by weakly-supervised disentangled logic variational autoencoder
Out-of-distribution (OOD) detection, i.e., finding test samples derived from a different distribution than the training set, as well as reasoning about such samples (OOD reasoning), are necessary to ensure the safety of results generated by machine learning models. Recently there have been promising...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/178684 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
成為第一個發表評論!