Optimizing differential expression analysis for proteomics data via high-performing rules and ensemble inference
Identification of differentially expressed proteins in a proteomics workflow typically encompasses five key steps: raw data quantification, expression matrix construction, matrix normalization, missing value imputation (MVI), and differential expression analysis. The plethora of options in each step...
Saved in:
Main Authors: | Peng, Hui, Wang, He, Kong, Weijia, Li, Jinyan, Goh, Wilson Wen Bin |
---|---|
其他作者: | Lee Kong Chian School of Medicine (LKCMedicine) |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/178809 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Visible light based occupancy inference using ensemble learning
由: Hao, Jie, et al.
出版: (2018) -
Common axioms for inferring classical ensemble dynamics and quantum theory
由: Parwani, R.R.
出版: (2014) -
PROSE: phenotype-specific network signatures from individual proteomic samples
由: Wong, Bertrand Jern Han, et al.
出版: (2023) -
Oblique decision tree ensemble via twin bounded SVM
由: Ganaie, M. A., et al.
出版: (2022) -
ProInfer: an interpretable protein inference tool leveraging on biological networks
由: Peng, Hui, et al.
出版: (2023)