3D cementitious composites printing with pretreated recycled crumb rubber: mechanical and acoustic insulation properties

Cementitious materials incorporating recycled crumb rubber have become a common sustainable resolution in diverse building environments to achieve various functions in terms of lightweight, ductility, as well as energy absorption. This study explored the 3D printed rubberised cementitious composites...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Xiangyu, Du, Liangfen, Liu, Zhenbang, Li, Mingyang, Weng, Yiwei, Liu, Zhixin, Tay, Daniel Yi Wei, Fan, Zheng, Wong, Teck Neng, Tan, Ming Jen
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/180612
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Cementitious materials incorporating recycled crumb rubber have become a common sustainable resolution in diverse building environments to achieve various functions in terms of lightweight, ductility, as well as energy absorption. This study explored the 3D printed rubberised cementitious composites (3DPRC) in two aspects: examining the effects of crumb rubber pretreatment conditions on compressive properties; conducting experimental and numerical analysis on the acoustic dissipation characteristics of 3DPRC. Fine crumb rubber granules (3-5 mm) replaced 10%, 20%, and 30% of river sand in the composites. Uniaxial compression tests indicated that the compressive strength of 3DPRC decreased with the increase of crumb rubber content and introduced anisotropic behaviour. Impedance tube tests were conducted to evaluate the sound absorption and insulation capabilities of 3DPRC. An optimal Noise Reduction Coefficient (NRC) of 0.35 was achieved with 30% crumb rubber. The sound insulation properties depend strongly on the mass density and porosity of the 3DPRC. Additionally, it is proved that the volume of built-in air gap has positive effects on both sound absorption and insulation properties. The results from Finite Element Method (FEM) numerical simulations correlated well with experimental data, proving the efficiency of the simulation and validating the experimental results.