Tailoring surface electronic structure of spinel Co3O4 oxide via Fe and Cu substitution for enhanced oxygen evolution reaction

Multimetal spinel oxides are promising candidates for the oxygen evolution reaction (OER) due to their ability to offer more accessible active sites and oxygen vacancies (Ovac). However, the utilization of redox-active species in spinel oxides is limited. Herein, we unveil an efficient multimetal sp...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ahmed, Mahmoud Gamal, Tay, Ying Fan, Zhang, Mengyuan, Chiam, Sing Yang, Wong, Lydia Helena
مؤلفون آخرون: School of Materials Science and Engineering
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/181038
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Multimetal spinel oxides are promising candidates for the oxygen evolution reaction (OER) due to their ability to offer more accessible active sites and oxygen vacancies (Ovac). However, the utilization of redox-active species in spinel oxides is limited. Herein, we unveil an efficient multimetal spinel oxide using high-throughput methods. The oxide contains Fe and Cu substituted into Co sites following a stoichiometry of Fe0.6Cu0.6Co1.8O4. The dual cation substitution of Fe and Cu manipulates the electronic states and generates Ovac, thereby generating more accessible active species. This significantly improves the OH- adsorption capacity on spinel oxide triggering a more favorable OER reaction with a low overpotential of 265 mV at 10 mA cm-2 and high durability in an alkaline medium. Our work not only presents the utilization of a high-throughput approach to explore efficient catalysts with optimal composition but also provides useful insights into the modulation of electronic states for enhanced catalytic performance.