Haze removal from an image or a video via generative adversarial networks
Low visibility caused by haze and fog is one of the major reasons for traffic and aviation accidents. This paper introduces a more easy-to-access solution to remove haze from a single image, video, and live-streaming. My approach uses a modified conditional Generative Adversarial Network (cGAN) with...
Saved in:
主要作者: | Chen, Zhong Jiang |
---|---|
其他作者: | Loke Yuan Ren |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/181155 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Be a cartoonist : editing anime images using generative adversarial network
由: Koh, Tong Liang
出版: (2022) -
Augmenting image data using generative adversarial networks (GAN)
由: Liu, Xinchi
出版: (2024) -
Multi-stage generative adversarial networks for generating pavement crack images
由: Han, Chengjia, et al.
出版: (2024) -
The use of generative adversarial network and graph convolution network for neuroimaging-based diagnostic classification
由: Huynh, Nguyen, et al.
出版: (2024) -
Anime characters creation using generative adversarial networks with user inputs
由: Ang, Himari Lixin
出版: (2024)