Programmatic policies for interpretable reinforcement learning using pre-trained models

Decision Trees (DTs) are widely used in machine learning due to their critical interpretability. However, training DTs in a Reinforcement Learning (RL) setting is challenging. In the project, we present a framework to improve the interpretability of reinforcement learning (RL) by generating prog...

全面介紹

Saved in:
書目詳細資料
主要作者: Tu, Xia Yang
其他作者: Arvind Easwaran
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
LLM
在線閱讀:https://hdl.handle.net/10356/181169
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!