Fake news detection through feature fusion: Leveraging RoBERTa and knowledge graphs with gating
This dissertation explores feature fusion by combining RoBERTa and Knowledge Graph (KG) techniques using Gated Units to improve the accuracy of fake news detection. In text processing, RoBERTa model is able to understand and classify false content effectively due to its pre-training advantage. On th...
Saved in:
主要作者: | Fang, Zhuohao |
---|---|
其他作者: | Na Jin Cheon |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/181597 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Fake news and scandal
由: Cabañes, Jason, et al.
出版: (2019) -
FANG: Leveraging Social Context for Fake News Detection Using Graph Representation
由: NGUYEN VAN HA, et al.
出版: (2021) -
Effective fake news detection
由: Ang, Jun Koon
出版: (2025) -
Winning the game against fake news? Using games to inoculate adolescents and young adults in Singapore against fake news
由: Tandoc, Edson C., et al.
出版: (2024) -
The psychology of fake news: an exploratory inquiry into social media users' consumption of fake news
由: Angeles, Patrick Joshua M., et al.
出版: (2018)