A multi-source learning method for open-switch fault diagnosis in power converters
This dissertation explores a novel multi-source domain adaptation extreme learning machine (MDAELM) method for diagnosing open-circuit faults in insulated gate bipolar transistors (IGBTs) within three-phase inverters. Traditional fault diagnosis methods often fail to address challenges arising from...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Thesis-Master by Coursework |
اللغة: | English |
منشور في: |
Nanyang Technological University
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/182463 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | This dissertation explores a novel multi-source domain adaptation extreme learning machine (MDAELM) method for diagnosing open-circuit faults in insulated gate bipolar transistors (IGBTs) within three-phase inverters. Traditional fault diagnosis methods often fail to address challenges arising from data distribution shifts and domain variability in real-world applications. To overcome these limitations, this research employs maximum mean discrepancy (MMD) to align data distributions across domains and introduces a soft-label weighted voting mechanism to enhance classification accuracy. Experimental results demonstrate that MDAELM outperforms conventional methods, such as single-domain extreme learning machines (ELM) and support vector machines (SVM), in terms of fault classification accuracy, robustness, and computational efficiency. This study provides a scalable and effective solution for power converter fault diagnosis, offering potential applications in industrial systems with varying operational conditions. |
---|