A multi-source learning method for open-switch fault diagnosis in power converters
This dissertation explores a novel multi-source domain adaptation extreme learning machine (MDAELM) method for diagnosing open-circuit faults in insulated gate bipolar transistors (IGBTs) within three-phase inverters. Traditional fault diagnosis methods often fail to address challenges arising from...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/182463 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | This dissertation explores a novel multi-source domain adaptation extreme learning machine (MDAELM) method for diagnosing open-circuit faults in insulated gate bipolar transistors (IGBTs) within three-phase inverters. Traditional fault diagnosis methods often fail to address challenges arising from data distribution shifts and domain variability in real-world applications. To overcome these limitations, this research employs maximum mean discrepancy (MMD) to align data distributions across domains and introduces a soft-label weighted voting mechanism to enhance classification accuracy. Experimental results demonstrate that MDAELM outperforms conventional methods, such as single-domain extreme learning machines (ELM) and support vector machines (SVM), in terms of fault classification accuracy, robustness, and computational efficiency. This study provides a scalable and effective solution for power converter fault diagnosis, offering potential applications in industrial systems with varying operational conditions. |
---|